

Document Number:

Intel® AtomTM Apollo Lake Processor

Windows 10 IO Driver

Software Developer’s Manual

September 2018

Software Development Manual

2 Intel Confidential Document Number:

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products

described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter

disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications

and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting:

http://www.intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn

more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, Celeron and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/

Document Number: Intel Confidential 3

Contents

1.0 CHAPTER 1: About this Manual .. 4

1.1 Operating System Covered in this Manual .. 4

2.0 CHAPTER 2 General Purpose Input Output (GPIO) Driver .. 5

2.1 Driver Features ... 5

2.2 Interface Details ... 5

2.3 IOCTL Usage Details .. 6

2.3.1 IOCTL_GPOT_OPEN_INPUT ... 6
2.3.2 IOCTL_GPOT_OPEN_OUTPUT ... 6
2.3.3 IOCTL_GPOT_CLOSE .. 6
2.3.4 IOCTL_GPOT_READ ... 7
2.3.5 IOCTL_GPOT_GET_STATUS ... 7
2.3.6 IOCTL_GPOT_GET_RESOURCE_COUNT .. 7
2.3.7 IOCTL_GPOT_WRITE_HIGH / LOW .. 8

2.4 Structures ... 8

2.5 Error Handling.. 8

2.6 Inter-IOCTL Dependencies.. 9

2.7 Programming Guide for GPIO Driver ... 9

3.0 CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter

(HSUART) ...10

3.1 Driver Features .. 10

3.2 Interface Details .. 11

3.3 Error Handling... 12

3.4 Programming Guide .. 12

3.4.1 Open Device .. 12
3.4.2 Set IOCTLs Configuration and Data Transfer ... 13
3.4.3 Close Device .. 16

Figures

No table of figures entries found.

Tables

No table of figures entries found.

CHAPTER 1: About this Manual

Software Development Manual

4 Intel Confidential Document Number:

1.0 CHAPTER 1: About this Manual

1.1 Operating System Covered in this Manual

This Manual set includes information pertaining to the following set of Operating system

 Windows 10 IOT Enterprise 64 Bit RS4

 Windows 10 IOT Core 64 Bit RS4

The IO drivers are dependent on the Operating System (OS) driver installation.

CHAPTER 2 General Purpose Input Output (GPIO) Driver

Document Number: Intel Confidential 5

2.0 CHAPTER 2 General Purpose Input Output

(GPIO) Driver

This section provides the programming details and interface exposed by General

Purpose Input Output (GPIO) driver for Windows 10. The current implementation of the

driver exposes the interfaces through Input / Output Controls (IOCTLs), which can be

called from the application (user mode) using the API DeviceIoControl (Refer to the

MSDN documentation for more details on this API). The following sections provide

information about the IOCTL and how to use them to configure the GPIO hardware.

2.1 Driver Features

The GPIO Driver Supports:

 Writing data to GPIO hardware

 Reading data from GPIO hardware

 Setting the direction of GPIO hardware

Limitation:

 Multiplexing is not supported. Any pin-multiplexing and pad configuration must

be completed in the firmware prior to handing control to the OS loader.

2.2 Interface Details

Table below lists IOCTLs supported by the driver

No IOCTL Remark

1 IOCTL_GPOT_OPEN_INPUT Set as input direction of selected pin

of given GPIO controller

2 IOCTL_GPOT_OPEN_OUTPUT Set as output direction of selected

pin of given GPIO controller

3 IOCTL_GPOT_READ To read from a set of GPIO pins that

are configured as inputs.

4 IOCTL_GPOT_CLOSE Close IO pin and set to default

5 IOCTL_GPOT_GET_STATUS Read the pin status of selected pin of

given GPIO controller

6 IOCTL_GPOT_GET_RESOURCE_COUNT Count the pin resource of GPIO

7 IOCTL_GPOT_WRITE_HIGH / LOW To write to a set of GPIO pins that are

configured as outputs

CHAPTER 2 General Purpose Input Output (GPIO) Driver

Software Development Manual

6 Intel Confidential Document Number:

2.3 IOCTL Usage Details

This section assumes a single client model where there is a single application-level

program configuring the GPIO interface and initiating I/O operations. The following files

contain the details of the IOCTLs and data structures used.

2.3.1 IOCTL_GPOT_OPEN_INPUT

This IOCTL is called to set the input direction of selected pin of given GPIO controller.

The prerequisite is the device must be installed and opened using API CreateFile and the

pin is set to GPIO function mode.

2.3.2 IOCTL_GPOT_OPEN_OUTPUT

This IOCTL is called to set the output direction of selected pin of given GPIO controller.

The prerequisite is the device must be installed and opened using API CreateFile and

the pin is set to GPIO function mode.

2.3.3 IOCTL_GPOT_CLOSE

This IOCTL is to close GPIO pin and set GPIO pin value back to default. Once all the

operations related to GPIO driver are finished, the device handle must free the

application by calling the IOCTL_GPOT_CLOSE.

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
DeviceIoControl (hHandle,

IOCTL_GPOT_OPEN_INPUT,
¶meter,
sizeof (GPIO_PIN_PARAMETERS), NULL, 0,
&dwSize,
NULL);

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
DeviceIoControl (hHandle,

IOCTL_GPOT_OPEN_INPUT,
¶meter,
sizeof (GPIO_PIN_PARAMETERS), NULL, 0,
&dwSize,
NULL);

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
DeviceIoControl (CreateFile,

IOCTL_GPOT_CLOSE,
¶meter,
sizeof (GPIO_PIN_PARAMETERS), NULL, 0,
&dwSize,
NULL);

CHAPTER 2 General Purpose Input Output (GPIO) Driver

Document Number: Intel Confidential 7

2.3.4 IOCTL_GPOT_READ

This IOCTL is called to read from a set of GPIO pins that are configured as inputs. The

prerequisite is the device must be installed and opened using API CreateFile. To read a

value to a pin, the pin must first set to Input mode, refer to Section 2.3.1.

2.3.5 IOCTL_GPOT_GET_STATUS

This IOCTL is to read the pin status from GPIO controller. The prerequisite is the device

must be installed and opened using API CreateFile.

2.3.6 IOCTL_GPOT_GET_RESOURCE_COUNT

This IOCTL is to request a controller-specific device-control operation and count the

GPIO test pin.

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
GPIO_PIN_DATA pindata;
UNIT pindata = 0;
DeviceIoControl (hHandle,

IOCTL_GPOT_READ,
¶meter,
sizeof (GPIO_PIN_PARAMETERS),
&pindata,
sizeof (GPIO_PIN_DATA),
&dwSize,
NULL);

 GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
GPOT_STATUS_ENTRY *pins;
DeviceIoControl (hHandle,

IOCTL_GPOT_GET_STATUS, NULL, 0,
¶meter,
sizeof (GPIO_STATUS_ENTRY),
&dwSize
NULL);

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
UNIT pcnt;
OVERLAPPED Overlapped;
DeviceIoControl (hHandle,

IOCTL_GPOT_GET_RESOURCE_COUNT, NULL, 0,
&pcnt,
&dwSize ,
&Overlapped)

CHAPTER 2 General Purpose Input Output (GPIO) Driver

Software Development Manual

8 Intel Confidential Document Number:

2.3.7 IOCTL_GPOT_WRITE_HIGH / LOW

This IOCTL is to write to a set of GPIO pins that are configured as outputs. The value

can be high or low. The prerequisite is the device must be installed and opened using

API CreateFile. To write a value to pin, the pin must first set to output mode, refer to

2.3.2 section.

2.4 Structures

All structures used by the interfaces are defined in public.h. Below is the structure used

for preserving information related to the GPIO request.

Name

enum _GPOT_OPEN_STATE

{

 OpenStateNotOpened = 0,

 OpenStateInput,

 OpenStateOutput

} GPOT_OPEN_STATE;

struct _GPOT_STATUS_ENTRY

{

 LARGE_INTEGER ConnectionId;

 GPOT_OPEN_STATE OpenState;

 ULONG CFG0;

 ULONG CFG1;

} GPOT_STATUS_ENTRY;

2.5 Error Handling

Since the IOCTL command is implemented using the Windows API, the return value of

the call is dependent on and defined by the OS. On Windows, the return value is a non-

zero value. If the error is detected within or outside the driver, an appropriate system

defined value is returned by the driver.

GPIO_PIN_PARAMETERS parameter;
Parameter.pin = pin;
DeviceIoControl (CreateFile,

((value) ? IOCTL_GPOT_WRITE_HIGH: IOCTL_GPOT_WRITE_LOW),
¶meter,
sizeof (GPIO_PIN_PARAMETERS), NULL, 0 ,
&dwSize
NULL);

CHAPTER 2 General Purpose Input Output (GPIO) Driver

Document Number: Intel Confidential 9

2.6 Inter-IOCTL Dependencies

There are no inter-IOCTL dependencies for GPIO driver. Once the driver is loaded

successfully, the IOCTLs stated above can be used in any order.

2.7 Programming Guide for GPIO Driver

This section describes the basic procedure for using the GPIO driver from a user mode

application. All operations are through the IOCTLs exposed by the GPIO driver. The

steps involved in accessing the GPIO driver from the user mode application are

described below:

 Open the device

 Initialize and configure the driver with desired settings through the interfaces

exposed

 Perform read/write operations

 Close the device

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Software Development Manual

10 Intel Confidential Document Number:

3.0 CHAPTER 3: High Speed Universal

Asynchronous Receiver-Transmitter (HSUART)

This section provides the programming details of the High Speed Universal

Asynchronous Receiver-Transmitter (HSUART) driver for Windows 10. This included the

information about the interfaces exposed by the driver and how to use the interfaces to

driver the HSUART hardware through Input/Output Controls (IOCTLs), which can be

called from the application (user mode) using the API DeviceIoControl. Refer to the MSDN

documentation for more details on this API.

HSUART is an individual integrated circuit (IC) used for serial communication and a device

for asynchronous serial communication in which the data format and transmission

speeds are configurable.

3.1 Driver Features

The HSUART driver supports:

 Supports none, odd and even parity

 Supports data sizes of 5, 6, 7 and 8 bit

 Supports 1, 1.5 and 2 stop bits

 Support “Hardware” (RTS / CTS) and “No” flow control

 Supports baud rates of 300-921600, up to 3686400 by default. To set baud

rates of 1M, 2M, 3M and 4M, refer to the Software Driver BKMs.

 Supports Serial Device Control Requests (IOCTLs) defined by Microsoft for

serial controllers in Windows. Refer to the following Limitations section for

IOCTLs

Limitations:

 When using 1.5 stop bits, the data size can only be supported up to 5 bits.

 DTR/DSR handshake is not supported

 The following are IOCTLs that are not supported in the driver:

o IOCTL_SERIAL_XOFF_COUNTER

o IOCTL_SERIAL_LSRMST_INSERT

o IOCTL_SERIAL_SET_BREAK_ON

o IOCTL_SERIAL_SET_BREAK_OFF

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Document Number: Intel Confidential 11

3.2 Interface Details

In Windows 10, to control a peripheral device that connected to a port on a serial

controller, it uses IRP_MJ_WRITE and IRP_MJ_READ requests to transmit and receive

data from a serial port. Windows defines a set of serial I/O control request (IOCTLs) that

a client can use to configure a serial port.

Table below lists IOCTLs supported by the driver

No IOCTL Remark

1 IOCTL_UARTTESTTOOL_OPEN Enable and Open Multi-Com Port

2 IOCTL_SERIAL_SET_BAUD_RATE Request set the baud rate on a serial

controller device

3 IOCTL_SERIAL_GET_BAUD_RATE Request returns the baud rate at which

the serial port is currently configured to

transmit and receive data

4 IOCTL_SERIAL_SET_MODEM_CONTR

OL

To set the modem control register

5 IOCTL_SERIAL_GET_MODEM_CONTR

OL

To obtain the value of the MCR

6 IOCTL_SERIAL_SET_LINE_CONTROL Request sets the line control register

7 IOCTL_SERIAL_GET_LINE_CONTROL To obtain the value of the line control

register

8 IOCTL_SERIAL_SET_CHARS To set special characters

9 IOCTL_SERIAL_GET_CHARS Request retrieves the special characters

that the serial controller driver uses with

handshake flow control

10 IOCTL_SERIAL_SET_HANDFLOW To set Configuration of handshake flow

control

11 IOCTL_SERIAL_GET_HANDFLOW Request returns information about the

configuration of the handshake flow

control

12 IOCTL_SERIAL_GET_MODEMSTATUS Request updates the modem status and

return value of the modem status register

before the update

13 IOCTL_SERIAL_GET_DTRRTS Request return information about the

data terminal ready (DTR) control signal

and request to send (RTS) control signal

14 IOCTL_SERIAL_GET_COMMSTATUS Request returns information about the

communication status of a serial device

15 IOCTL_SERIAL_GET_PROPERTIES Request returns information about the

capabilities of a serial controller.

16 IOCTL_SERIAL_SET_FIFO_CONTROL Request sets the FIFO control register

(FCR)

17 IOCTL_SERIAL_GET_STATS Request returns information about the

performance of a serial controller

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Software Development Manual

12 Intel Confidential Document Number:

18 IOCTL_SERIAL_CLEAR_STATS Request clears the performance statistics

for a serial device.

19 IOCTL_SERIAL_PURGE Request cancels the specified requests

and deletes data from the specified

buffers.

20 IOCTL_SERIAL_SET_TIMEOUTS Request sets the time-out values that the

serial controller driver uses for read and

write requests.

21 IOCTL_UARTTESTTOOL_CLOSE Disable and close Multi-Com Port

22 IOCTL_SERIAL_GET_TIMEOUTS Request returns the time-out values that

the serial controller driver uses with read

and write requests.

23 IOCTL_SERIAL_SET_WAIT_MASK Request configures the serial controller

driver to notify a client after the

occurrence of any one of a specified set

of wait events.

24 IOCTL_SERIAL_WAIT_ON_MASK Request is used to wait for the occurrence

of any wait event specified by using

an IOCTL_SERIAL_SET_WAIT_MASK request.

25 IOCTL_SERIAL_SET_QUEUE_SIZE Request sets the size of the internal

receive buffer

3.3 Error Handling

Since the IOCTL command is implemented using the Windows API, the return value of

the call is dependent on and defined by the OS. On Windows, the return value is a non-

zero value. If the error is detected within or outside the driver, an appropriate system

defined value is returned by the driver.

3.4 Programming Guide

This section explains the basic procedure to use the HSUART driver from a user

application mode. All operations are performed through the IOCTLs that are exposed by

the HSUART driver.

3.4.1 Open Device

The HSUART driver is opened using the Win32 CreateFile API. Since there are more

than one HSUART Serial Com Port in APL-I Platform, therefore it require configure each

of the handler, so can be able open the correct controller com port that user need.

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Document Number: Intel Confidential 13

3.4.2 Set IOCTLs Configuration and Data Transfer

In HSUART, it supports full duplex, single duplex and others configuration like baudrate,

data size, flow control, priority and stop bit. All configures by using Input/Output

controller.

WaitforMultipleObjectsEx function is used to waits until one of all of the specified objects

are in the signaled state. Example for full duplex:

WaitForMultipleObjectsEx(2, writeThread, TRUE, INFINITE, TRUE);

WaitForMultipleObjectsEx(2, readThread, TRUE, INFINITE, TRUE);

Below is the IOCTL code sample:

IOCTL_SERIAL_GET_BAUD_RATE and IOCTL_SERIAL_SET_BAUD_RATE Code Example

IOCTL_SERIAL_SET_RTS Code Example

ULONG BaudRate_value = 0;

DWORD junk;

status = DeviceIoControl(

fileHandler,

IOCTL_SERIAL_GET_BAUD_RATE,

NULL,0,

&BaudRate_value,

sizeof(BaudRate_value),

&junk,

(LPOVERLAPPED)NULL);

status = DeviceIoControl(

fileHandle,

IOCTL_SERIAL_SET_BAUD_RATE,

&BaudRate_set,

sizeof(BaudRate_set),

NULL,0,

&junk,

(LPOVERLAPPED)NULL);

status = DeviceIoControl(

fileHandler,

IOCTL_SERIAL_SET_RTS,

NULL,0,

NILL,0,

&junk,

(LPOVERLAPPED)NULL);

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Software Development Manual

14 Intel Confidential Document Number:

IOCTL_SERIAL_SET_LINE_CONTROL Code Example

IOCTL_SERIAL_SET_HANDFLOW Code Example

IOCTL_SERIAL_SET_MODEM_CONTROL Code Example

SERIAL_LINE_CONTROL LineCtl;

LineCtl.Parity = Parity;

LineCtl.StopBits = StopBits;

LineCtl.WordLength = WordLength;

status = DeviceIoControl(

FileHandle,

IOCTL_SERIAL_SET_LINE_CONTROL,

&LineCtl,

sizeof(SERIAL_LINE_CONTROL),NULL,0,

&junk,

(LPOVERLAPPED)NULL);

SERIAL_HANDFLOW HandFlow;

HandFlow.ControlHandShake = ControlHandShake;

HandFlow.FlowReplace = FlowReplace;

HandFlow.XoffLimit = XonLimit;HandFlow.XonLimit = XoffLimit;

status = DeviceIoControl(

Filehandle,

IOCTL_SERIAL_SET_HANDFLOW,

&HandFlow,

sizeof(SERIAL_HANDFLOW),NULL,0,

&junk,

(LPOVERLAPPED)NULL);

status = DeviceIoControl(

FileHandle,

IOCTL_SERIAL_SET_MODEM_CONTROL,

&ModermCode,

sizeof(ModermCode),NULL,0,

&junk,

(LPOVERLAPPED)NULL);

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Document Number: Intel Confidential 15

IOCTL_SERIAL_SET_CHARS Code Example

IOCTL_SERIAL_SET_FIFO_CONTROL Code Example

Example of write and read transfer:

SERIAL_CHARS SpecialChars;

SpecialChars.BreakChar = BreakChar;SpecialChars.EofChar = EofChar;

SpecialChars.ErrorChar = ErrorChar;SpecialChars.EventChar = EventChar;

SpecialChars.XoffChar = XoffChar;SpecialChars.XonChar = XonChar;

status = DeviceIoControl(

FileHandle,

IOCTL_SERIAL_SET_CHARS,

&SpecialChars,

sizeof(SERIAL_CHARS),NULL,0,

&junk,

(LPOVERLAPPED)NULL);

ULONG FifoControl = 0x86;

status = DeviceIoControl(

FileHandle,

IOCTL_SERIAL_SET_FIFO_CONTROL,

&FifoControl,

sizeof(FifoControl),NULL,0,

&junk,

(LPOVERLAPPED)NULL);

 writeThread[0] = CreateThread(

 NULL, // default security attributes

 0, // use default stack size

 ThreadWriteCom, // thread function name

 hHandle, // argument to thread function

 0, // use default creation flags

 &dwThreadIdW1); // returns the thread identifier

 readThread[0] = CreateThread(

 NULL,

 0,

 ThreadReadCom,

 hHandle,

 0,

 &dwThreadIdR1);

CHAPTER 3: High Speed Universal Asynchronous Receiver-Transmitter (HSUART)

Software Development Manual

16 Intel Confidential Document Number:

3.4.3 Close Device

Once all operations related to the HSUART driver are finished the device handle must

free the application by calling the API CloseHandle.

 CloseHandle(hHandle);

§

